The Impact of a Unique Airway Clearance System on Airway Mechanics in Ventilated Patients

Schofield, L.¹, Shorr, A.F.², Washington, J. ¹, Carlson, M. ¹, Wagner, W.¹

¹ McLaren Northern Michigan Hospital, Petoskey, MI, ² Washington Hospital Center, Washington, DC

ABSTRACT

Background: The adherence of secretions along the endotracheal tube (ETT) lumen in mechanically ventilated (MV) patients results in airway narrowing and concomitantly may increase patients’ work of breathing. Biofilm accumulation may also promote the development of ventilator-associated pneumonia. Routine suctioning does not address the potential risks associated with secretions and biofilm that collect within the ETT lumen. A unique mucus shaver system (endOclear®) facilitates removal of secretions and biofilm.

The purpose of this study is to determine the effectiveness of reducing peak airway pressures and resistance in ventilated patients who have their ETT cleared with a mucus shaver system. The hypothesis is: Application of a mucus shaver system in addition to routine suctioning prior to spontaneous breathing trials (SBTs) lowers both peak airway pressures and airway resistance.

Methods: This study retrospectively identified all subjects having their ETTs cleared at a single institution prior to beginning a SBT between Jan 2012-Jul 2013. All subjects had received at least 24 hrs of MV prior to the SBT, and all underwent routine suctioning with a closed in-line system prior to use of the mucus shaver. Peak airway pressures before and after the additional use of the mucus shaver along with changes in airway resistance served as our co-primary endpoints. The study also compared changes in these variables as function of the ETT lumen size.

Results: The median peak airway pressure measured 29 cm H2O before use of the mucus clearance system and fell to 23 cm H2O (p<0.001). There was a similar decline in the median airway resistance (27 cm H2O/ Lps to 15 cm H2O/Lps, p < 0.001). The average percent decline in peak airway pressure equaled 17.6 ± 13.3% while the mean drop in airway resistance was greater, 33.3 ± 18.9%. Seventy-five percent of subjects experienced a greater than 10% and 19% fall in peak airway pressure and airway resistance, respectively. Differences in ETT lumen size did not alter the magnitude of the fall seen in either of the co-primary endpoints.

Conclusions: The addition of a unique mucus shaving and tube cleaning system to routine suction prior to an SBT significantly reduces both peak airway pressure and airway resistance in persons undergoing SBTs.
INTRODUCTION

- Current standard of care closed suction systems do not completely clean the inside of the endotracheal tube.1,3,4,5
- Secretions and biofilm accumulation may lead to decreased liberation from the ventilator7,8 and increased ventilator associated pneumonia (VAP).6
- Recent protocol use of an endotracheal tube cleaning device prior to spontaneous breathing trials at one center was associated with improved patient outcome (decreased length of intubation and decreased length of ICU and hospital stay) and decreased hospital cost.2
- Physiologic implications of this new secretion management tool have not yet been described.

STUDY OBJECTIVE

To describe the effect of routine, protocolized use of the endOclear® device on physiologic measures of airway resistance and peak airway pressures during efforts to liberate patients from the ventilator.

METHODS

Design: Retrospective, observational quality assurance study, January 2012 through July 2013

Setting: Community hospital, 18 bed mixed medical-surgical ICU

Subjects: Mechanically ventilated patients on the ventilator over 24 hours

Protocol:
- Prior to SBT, the patient undergoes standard closed suctioning
- Peak-airway-pressure (PAP) and resistance are measured while the patient is still in ventilated mode
- endOclear® (Figure 1) is used and measurements on the same settings are repeated
- Patient undergoes SBT

Endpoints: PAP and airway resistance

Statistics:
- Endpoints from before and after endOclear® use compared with Student’s t test (paired)
- p < 0.05 assumed to represent statistical significance
Cohort
n = 109 patients, 18 bed mixed surgical / medical ICU
In 2011, prior to use of endOclear® the mean duration of MV was 4.3 days
Mean duration of MV in current population was 3.4 days

- Median airway resistance declined from 27 cm H2O/Lps to 15 cm H2O/Lps (p < 0.001)
- Median peak airway pressure measured 29 cm H2O before use of the mucus clearance system and fell to 23 cm H2O (p<0.001)
- The average percent decline in peak airway pressure equaled 17.6 ± 13.3%
- The mean drop in airway resistance was greater, 33.3 ± 18.9%
- Seventy-five percent of subjects experienced a greater than 10% and 19% fall in peak airway pressure and airway resistance, respectively
- Differences in ETT lumen size (e.g., whether 8.0 mm vs. smaller) did not alter the magnitude of the fall seen in either of the co-primary endpoints

METHODS
Addition of a unique mucus shaving and tube cleaning system (endOclear®) to routine suctioning prior to an SBT significantly reduces both peak airway pressure and airway resistance.

Our findings provide a physiologic rationale to explain the impact of this system on duration of MV noted in other reports.

References

1. Wilson, A., Gray, D., Thomas, J., 2009, Increases in Endotracheal Tube Resistance Are Unpredictable Relative to Duration of Intubation, CHEST October 2009 vol. 136 no. 4 1006-1013


5. Ntoumenopoulos, G., 2013, Endotracheal Suctioning May or May Not Have an Impact, But It Does Depend on What You Measure!, RESPIRATORY CARE October 2013 Vol 58 No 10


* Work completed at:
McLaren Northern Michigan Hospital.
Petoskey, Michigan
(231) 387-3042
schofield@northernhealth.org
The Impact of a Unique Airway Clearance System on Airway Mechanics in Ventilated Patients

Schroff, L. 1, Sherr, A.F. 1, Washington, J. 1, Carlson, M. 1, Wagner, W. 1
1 McLaren Northern Michigan Hospital, Petoskey, MI, 2 Washington Hospital Center, Washington, DC

ABSTRACT

Background: The adherence of secretions along the endotracheal tube (ETT) lumen in mechanically ventilated (MV) patients results in airway narrowing and concomitantly may increase patients’ work of breathing. Biofilm accumulation may also promote the development of ventilator-associated pneumonia. Routine suctioning does not address the potential risks associated with secretions and biofilm that collect within the ETT lumen. A unique mucus shaver system (endOclear®) facilitates removal of secretions and biofilm.

The purpose of this study is to determine the effectiveness of reducing peak airway pressures and resistance in ventilated patients who have their ETT cleared with a mucus shaver system. The hypothesis is: An mucus shaver system in addition to routine suctioning prior to spontaneous breathing trials (SBTs) lowers both peak airway pressures and airway resistance.

Methods: This study retrospectively identified all subjects having their ETTs cleared at a single institution prior to a beginning a SBT between Jan 2012-July 2013. All subjects had received at least 24 hrs of MV prior to the SBT, and all underwent routine suctioning with a closed-in-line system prior to use of the mucus shaver. Peak airway pressures before and after the additional use of the mucus shaver along with changes in airway resistance served as our co-primary endpoints. The study also compared changes in these variables as a function of the ETT lumen size.

Results: The median peak airway pressure measured 29 cm H2O before use of the mucus clearance system and fell to 23 cm H2O (p<0.001). There was a similar decline in the median airway resistance (27 cm H2O/Lps to 15 cm H2O/Lps, p<0.001). The average percent decline in peak airway pressure equaled 17.6 ± 13.3% while the mean drop in airway resistance was 33.3 ± 18.9%. Seventy-five percent of subjects experienced a greater than 10% and 19% fall in peak airway pressure and airway resistance, respectively. Differences in ETT lumen size did not alter the magnitude of the fall seen in either of the co-primary endpoints.

Conclusions: The addition of a unique mucus clearing and tube cleaning system to routine suction prior to an SBT significantly reduces both peak airway pressure and airway resistance in persons undergoing SBTs.

INTRODUCTION

Current standard of care closed suction systems do not completely clean the inside of the endotracheal tube. 1-3 Secretions and biofilm accumulation may lead to decreased liberation from the ventilator 4-5 and increased ventilator associated pneumonia. 6-7 Current standard of care closed suction systems do not completely clean the inside of the endotracheal tube. The adherence of secretions along the endotracheal tube (ETT) lumen in mechanically ventilated (MV) patients results in airway narrowing and concomitantly may increase patients’ work of breathing. Biofilm accumulation may also promote the development of ventilator-associated pneumonia. 8 Endotracheal suctioning does not address the potential risks associated with secretions and biofilm that collect within the ETT. A unique mucus shaver system (endOclear®) facilitates removal of secretions and biofilm.

STUDY OBJECTIVE

To describe the effect of routine, protocolized use of the endOclear® device on physiologic measures of airway resistance and peak airway pressures during efforts to liberate patients from the ventilator.

RESULTS

Endpoints from before and after endOclear® use compared with Student’s t test (paired)

• Differences in ETT lumen size (e.g., whether 8.0 mm vs. smaller) did not alter the magnitude of the fall seen in either of the co-primary endpoints.

CONCLUSIONS

• Additon of a unique mucus shaver and tube cleaning system (endOclear®) to routine suctioning prior to an SBT significantly reduces both peak airway pressure and airway resistance.

Our findings provide a physiologic rationale to explain the impact of this system on duration of MV noted in other reports.

REFERENCES:


5. Ntoumenopoulos, G., 2013, Endotracheal Suctioning May or May Not Have an Impact, CHEST October 2009 vol. 136 no. 4 58 No 10


8. Prometheus Ltd., 2013, Endotracheal Suctioning May or May Not Have an Impact, CHEST October 2009 vol. 136 no. 4 58 No 10


